Warm-up

- 1. Look at the coordinate grid. How many points and in which coordinate plane?
- 2. Point A has coordinates (4, 2). True/False
- 3. What are the coordinates of Point B? Point C? Point D?

Practice

You will need grid paper.

4. Each graph below is a graph of a linear relation. Describe the relationship between the variables in each graph.
a) y = 4x - 1
b) y = -3x + 9

х

5. Graph each relation for integer values of *x* from 0 to 5.

a) $y = 2x$	b) $y = 3x$
c) $y = 4x$	d) $y = 5x$
e) $y = -2x$	f) $y = -3x$
g) $y = -4x$	h) $y = -5x$

- **6.** Graph each relation for integer values of *x* from 0 to 5.
 - a) y = 2x + 1b) y = 2x - 1c) y = -2x + 1d) y = -2x - 1e) y = 3x + 1f) y = 3x - 1g) y = -3x + 1h) y = -3x - 1
- 7. Here is a graph of the linear relation y = 8x + 3.

Graph of $y = 8x + 3$							
45	У						
45				(5	,)		
40							
35				-	(4,	35)	
30					`		
25			•	•(,	27)		
20			(2)			
15			(_,	′			
10	•	(1,	11)				
5							
5	(0,	3)				x	
0			2 3	3 4	1 {	5	

Each point on the graph is labelled with an ordered pair.

Some numbers in the ordered pairs are missing. Find the missing numbers. Explain how you did this. **8.** Here is a graph of the linear relation y = -6x - 5.

Each point on the graph is labelled with an ordered pair.

Some numbers in the ordered pairs are missing. Find the missing numbers. Explain how you did this.

9. Use the data from *Example 1*, page 361. An equation for the linear relation is: c = 11 + 2n,

where *n* is the number of toppings on the pizza, and *c* is the total cost of the pizza in dollars. Here is a table of values.

n	0	1	2	3	4	5	6	7	8
с	11	13	15	17	19	21	23	25	27

- a) Construct a graph for the data.
- **b)** Describe the relationship between the variables in the graph.
- c) Find the ordered pair on the graph that shows the cost of a pizza with 6 toppings.

10. Use the data from Lesson 6.6 *Practice* question 12, page 357. An equation for the linear relation is: m = 100 - 2n,

where n is the number of months that Herbie trains and m is his mass at any time in kilograms.

Here is a table of values.

n	0	2	4	6	8	10
m	100	96	92	88	84	80

- a) Construct a graph for the data.
- **b)** Describe the relationship between the variables in the graph.
- c) Find the ordered pair on the graph that indicates Herbie's mass after 7 months. Explain how you did this.
- **11.** Regina plans a marshmallow roast. She will buy

8 marshmallows for each person who attends, and 12 extra marshmallows in case someone shows up unexpectedly. Let *n* represent the number of people who attend. Let *m* represent the number of marshmallows Regina must buy. An equation that relates the number of marshmallows to the number of people is: m = 8n + 12

- a) Create a table of values for the relation.
- **b**) Graph the relation.
- c) Describe the relationship between the variables in the graph.
- d) Is the relation linear? How do you know?

- **12.** Graph each relation for integer values of x from -4 to 4.
 - a) y = 8x + 2 b) y = -8x 2c) y = -7x + 4 d) y = 5x - 4
- **13.** Peter's Promoting is organizing a concert. The cost of the venue and the rock band is \$15 000. Each concert ticket sells for \$300. Peter's profit is the money he makes from selling tickets minus the cost. Let *n* represent the number of tickets sold. Let *p* represent Peter's profit. An equation that relates the profit to the number of tickets sold is:
 - $p = 300n 15\ 000$
 - a) Create a table of values for the relation. Use these values of *n*: 10, 20, 30, 40, 50, 60, 70, 80
 - **b)** Graph the relation. What do negative values of *p* represent?
 - c) Describe the relationship between the variables in the graph.
 - **d)** How can you use the graph to find the profit when 75 tickets are sold?

14. A computer repair company charges \$60 to make a house call, plus an additional \$40 for each hour spent repairing the computer. An equation that relates the total cost to the time in hours for a house call is

C = 60 + 40n, where *n* represents the time in hours, and *C* represents the total cost of the house call in dollars.

- a) Graph the relation.
- **b**) Describe the relationship between the variables in the graph.
- c) Does the point (-1, 20) lie on the graph? What does this point represent? Does this point make sense in the context of the problem? Explain.

15.

- a) Graph each relation.Describe the relationship between the variables in the graph.
 - i) y = -9x + 4 ii) y = 6x 3
 - iii) y = -7x 2 iv) y = 4x + 11
 - v) y = 7x + 5 vi) y = 3x 8
 - **vii)** y = -9x 6 **viii)** y = -8x + 7
- b) Which graphs go up to the right?Which graphs go down to the right?
- c) How can you use the equation of a linear relation to tell if its graph goes up to the right or down to the right?